0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. 

Informacija

Autorius: James J. Palestro, Per B. Sederberg, Brandon M. Turner, Trisha Van Zandt, Adam F. Osth,
Serija: Computational Approaches to Cognition and Perception
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2019
Knygos puslapių skaičius: 144
ISBN-10: 3319891812
ISBN-13: 9783319891811
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Cognition and cognitive psychology

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Likelihood-Free Methods for Cognitive Science“

Būtina įvertinti prekę

Goodreads reviews for „Likelihood-Free Methods for Cognitive Science“