0 Mėgstami
0Krepšelis

Linear Algebra and Learning from Data

134,05 
134,05 
2025-07-31 134.0500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Informacija

Autorius: Gilbert Strang
Leidėjas: Cambridge University Pr.
Išleidimo metai: 2019
ISBN-10: 0692196382
ISBN-13: 9780692196380
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Mathematical modelling

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Linear Algebra and Learning from Data“

Būtina įvertinti prekę

Goodreads reviews for „Linear Algebra and Learning from Data“