This textbook explores applications of linear algebra in data science at an introductory level, showing readers how the two are deeply connected. The authors accomplish this by offering exercises that escalate in complexity, many of which incorporate MATLAB. Practice projects appear as well for students to better understand the real-world applications of the material covered in a standard linear algebra course. Some topics covered include singular value decomposition, convolution, frequency filtering, and neural networks. Linear Algebra in Data Science is suitable as a supplement to a standard linear algebra course.
Autorius: | Roberta La Haye, Peter Zizler, |
Serija: | Compact Textbooks in Mathematics |
Leidėjas: | Springer Nature Switzerland |
Išleidimo metai: | 2024 |
Knygos puslapių skaičius: | 208 |
ISBN-10: | 3031549074 |
ISBN-13: | 9783031549076 |
Formatas: | Knyga minkštu viršeliu |
Kalba: | Anglų |
Žanras: | Algebra |
Parašykite atsiliepimą apie „Linear Algebra in Data Science“