0 Mėgstami
0Krepšelis

Machine Learning for Evolution Strategies

Šiuo metu neparduodama

Knygos aprašymas

This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

Informacija

Autorius: Oliver Kramer
Leidėjas: Springer
Išleidimo metai: 2018
Knygos puslapių skaičius: 133
ISBN-13: 9783319815008
Formatas: 6.1 x 0.31 x 9.25 inches. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Machine Learning for Evolution Strategies“

Būtina įvertinti prekę

Goodreads reviews for „Machine Learning for Evolution Strategies“