0 Mėgstami
0Krepšelis

Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data

287,96 
287,96 
2025-07-31 287.9600 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are ample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.

Informacija

Autorius: Burkhardt Funk, Mark Hoogendoorn,
Serija: Cognitive Systems Monographs
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2017
Knygos puslapių skaičius: 248
ISBN-10: 3319663070
ISBN-13: 9783319663074
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Artificial intelligence (AI)

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data“

Būtina įvertinti prekę

Goodreads reviews for „Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data“