0 Mėgstami
0Krepšelis
82,48 
82,48 
2025-07-31 82.4800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour.

Informacija

Autorius: Mohd Azraai Mohd Razman, Anwar P. P. Abdul Majeed, Yukinori Mukai, Zahari Taha, Gian-Antonio Susto, Rabiu Muazu Musa,
Serija: SpringerBriefs in Applied Sciences and Technology
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2020
Knygos puslapių skaičius: 68
ISBN-10: 9811522367
ISBN-13: 9789811522369
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Electronics engineering

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Machine Learning in Aquaculture: Hunger Classification of Lates calcarifer“

Būtina įvertinti prekę

Goodreads reviews for „Machine Learning in Aquaculture: Hunger Classification of Lates calcarifer“