0 Mėgstami
0Krepšelis
82,48 
82,48 
2025-07-31 82.4800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". I wanted to develop the theory of "Elliptic Genera" and to learn it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thorn cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chern class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps 0 giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.

Informacija

Autorius: Friedrich Hirzebruch, Rainer Jung, Thomas Berger,
Serija: Aspects of Mathematics
Leidėjas: Vieweg+Teubner Verlag
Išleidimo metai: 1994
Knygos puslapių skaičius: 228
ISBN-10: 352816414X
ISBN-13: 9783528164140
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Engineering: general

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Manifolds and Modular Forms“

Būtina įvertinti prekę

Goodreads reviews for „Manifolds and Modular Forms“