0 Mėgstami
0Krepšelis

Mathematical Foundations of Nature-Inspired Algorithms

101,62 
101,62 
2025-07-31 101.6200 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.

Informacija

Autorius: Xing-Shi He, Xin-She Yang,
Serija: SpringerBriefs in Optimization
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2019
Knygos puslapių skaičius: 120
ISBN-10: 3030169359
ISBN-13: 9783030169350
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Numerical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematical Foundations of Nature-Inspired Algorithms“

Būtina įvertinti prekę

Goodreads reviews for „Mathematical Foundations of Nature-Inspired Algorithms“