0 Mėgstami
0Krepšelis
98,93 
98,93 
2025-07-31 98.9300 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathe­ matical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con­ sequence relation coincides with formal provability: By means of a calcu­ lus consisting of simple formal inference rules, one can obtain all conse­ quences of a given axiom system (and in particular, imitate all mathemat­ ical proofs). A short digression into model theory will help us to analyze the expres­ sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.

Informacija

Autorius: H. -D. Ebbinghaus, Wolfgang Thomas, J. Flum,
Leidėjas: Springer US
Išleidimo metai: 1994
Knygos puslapių skaičius: 308
ISBN-10: 0387942580
ISBN-13: 9780387942582
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Mathematical logic

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematical Logic“

Būtina įvertinti prekę

Goodreads reviews for „Mathematical Logic“