0 Mėgstami
0Krepšelis

Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics

220,20 
220,20 
2025-07-31 220.2000 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. Topics include partially ordered sets, combinatorics, general topology, metric spaces, linear spaces, graph theory. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc. The book is intended as a reference for researchers and graduate students. The current edition is a significant expansion of the first edition. We strived to make the book self-contained and only a general knowledge of mathematics is required. More than 700 exercises are included and they form an integral part of the material. Many exercises are in reality supplemental material and their solutions are included.

Informacija

Autorius: Chabane Djeraba, Dan A. Simovici,
Serija: Advanced Information and Knowledge Processing
Leidėjas: Springer London
Išleidimo metai: 2016
Knygos puslapių skaičius: 844
ISBN-10: 1447171349
ISBN-13: 9781447171348
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Numerical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics“

Būtina įvertinti prekę

Goodreads reviews for „Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics“