0 Mėgstami
0Krepšelis
203,26 
203,26 
2025-07-31 203.2600 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Data fusion or information fusion are names which have been primarily assigned to military-oriented problems. In military applications, typical data fusion problems are: multisensor, multitarget detection, object identification, tracking, threat assessment, mission assessment and mission planning, among many others. However, it is clear that the basic underlying concepts underlying such fusion procedures can often be used in nonmilitary applications as well. The purpose of this book is twofold: First, to point out present gaps in the way data fusion problems are conceptually treated. Second, to address this issue by exhibiting mathematical tools which treat combination of evidence in the presence of uncertainty in a more systematic and comprehensive way. These techniques are based essentially on two novel ideas relating to probability theory: the newly developed fields of random set theory and conditional and relational event algebra. This volume is intended to be both an update on research progress on data fusion and an introduction to potentially powerful new techniques: fuzzy logic, random set theory, and conditional and relational event algebra. Audience: This volume can be used as a reference book for researchers and practitioners in data fusion or expert systems theory, or for graduate students as text for a research seminar or graduate level course.

Informacija

Autorius: I. R. Goodman, Hung T. Nguyen, R. P. Mahler,
Serija: Theory and Decision Library B
Leidėjas: Springer Netherlands
Išleidimo metai: 2010
Knygos puslapių skaičius: 524
ISBN-10: 9048148871
ISBN-13: 9789048148875
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Probability and statistics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mathematics of Data Fusion“

Būtina įvertinti prekę

Goodreads reviews for „Mathematics of Data Fusion“