0 Mėgstami
0Krepšelis

Mild Differentiability Conditions for Newtons Method in Banach Spaces

93,15 
93,15 
2025-07-31 93.1500 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

In this book the authors use a technique based on recurrence relations to study the convergence of the Newton method under mild differentiability conditions on the first derivative of the operator involved. The authors¿ technique relies on the construction of a scalar sequence, not majorizing, that satisfies a system of recurrence relations, and guarantees the convergence of the method. The application is user-friendly and has certain advantages over Kantorovich¿s majorant principle. First, it allows generalizations to be made of the results obtained under conditions of Newton-Kantorovich type and, second, it improves the results obtained through majorizing sequences. In addition, the authors extend the application of Newton¿s method in Banach spaces from the modification of the domain of starting points. As a result, the scope of Kantorovich¿s theory for Newton¿s method is substantially broadened. Moreover, this technique can be applied to any iterative method. This book is chiefly intended for researchers and (postgraduate) students working on nonlinear equations, as well as scientists in general with an interest in numerical analysis.

Informacija

Autorius: Miguel Ángel Hernández Verón, José Antonio Ezquerro Fernandez,
Serija: Frontiers in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2020
Knygos puslapių skaičius: 192
ISBN-10: 3030487016
ISBN-13: 9783030487010
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Functional analysis and transforms

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Mild Differentiability Conditions for Newtons Method in Banach Spaces“

Būtina įvertinti prekę

Goodreads reviews for „Mild Differentiability Conditions for Newtons Method in Banach Spaces“