0 Mėgstami
0Krepšelis
169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Sampling from the posterior distribution and computing posterior quanti­ ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput­ ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv­ ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste­ rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in­ volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac­ tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.

Informacija

Autorius: Ming-Hui Chen, Joseph G. Ibrahim, Qi-Man Shao,
Serija: Springer Series in Statistics
Leidėjas: Springer New York
Išleidimo metai: 2012
Knygos puslapių skaičius: 404
ISBN-10: 146127074X
ISBN-13: 9781461270744
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Stochastics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Monte Carlo Methods in Bayesian Computation“

Būtina įvertinti prekę

Goodreads reviews for „Monte Carlo Methods in Bayesian Computation“