0 Mėgstami
0Krepšelis

Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdisciplinary fields only a few of them are well equipped to handle these multi-criteria issues of DM. Therefore, the DM issues have attracted considerable attention of the well established multiobjective genetic algorithm community to optimize the objectives in the tasks of DM. The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases.

Informacija

Serija: Studies in Computational Intelligence
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2008
Knygos puslapių skaičius: 176
ISBN-10: 3540774661
ISBN-13: 9783540774662
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Maths for engineers

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases“

Būtina įvertinti prekę

Goodreads reviews for „Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases“