0 Mėgstami
0Krepšelis

Non-axisymmetric Local Stability Loss of a Hollow Cylinder: Three-Dimensional Stability Loss in Time-Dependent Composites

67,74 
67,74 
2025-07-31 67.7400 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The book presents formulations and examples of three-dimensional non-axisymmetric stability in viscoelastic anisotropic cylindrical shells. The most critical stability loss modes are determined by minimizing the critical loads and critical times with respect to the number of half-waves in radial as well as transverse directions. Currently, there is no literature available on three-dimensional local buckling analysis (or localized warpage) that considers non-axisymmetric stability loss in viscoelastic cylindrical shells. The contents of this book provide the formulation for such a stability loss analysis through the framework of the three-dimensional linearized theory of stability. Additionally, as this book addresses the problem by modeling the material as a viscoelastic fibrous composite, it can be applied to carry out buckling analysis in both elastic and viscoelastic cases. Guide to modelling composite viscoelastic shell elements for buckling analysis Provides a framework for defining the failure criterion for viscoelastic materials Course material for teaching shell buckling and viscoelastic composites

Informacija

Autorius: Surkay D. Akbarov, Muhammad Yousaf Anwar, Zafer Kutug,
Serija: Synthesis Lectures on Mechanical Engineering
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2023
Knygos puslapių skaičius: 136
ISBN-10: 3031436288
ISBN-13: 9783031436284
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Engineering: Mechanics of solids

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Non-axisymmetric Local Stability Loss of a Hollow Cylinder: Three-Dimensional Stability Loss in Time-Dependent Composites“

Būtina įvertinti prekę

Goodreads reviews for „Non-axisymmetric Local Stability Loss of a Hollow Cylinder: Three-Dimensional Stability Loss in Time-Dependent Composites“