0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Non-Linear Estimation is a handbook for the practical statistician or modeller interested in fitting and interpreting non-linear models with the aid of a computer. A major theme of the book is the use of 'stable parameter systems'; these provide rapid convergence of optimization algorithms, more reliable dispersion matrices and confidence regions for parameters, and easier comparison of rival models. The book provides insights into why some models are difficult to fit, how to combine fits over different data sets, how to improve data collection to reduce prediction variance, and how to program particular models to handle a full range of data sets. The book combines an algebraic, a geometric and a computational approach, and is illustrated with practical examples. A final chapter shows how this approach is implemented in the author's Maximum Likelihood Program, MLP.

Informacija

Autorius: Gavin J. S. Ross
Serija: Springer Series in Statistics
Leidėjas: Springer US
Išleidimo metai: 2011
Knygos puslapių skaičius: 200
ISBN-10: 146128001X
ISBN-13: 9781461280019
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Applied mathematics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Nonlinear Estimation“

Būtina įvertinti prekę

Goodreads reviews for „Nonlinear Estimation“