0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them.

Informacija

Autorius: Ghada Alsuhli, Vasilis Sakellariou, Thanos Stouraitis, Mahmoud Al-Qutayri, Baker Mohammad, Hani Saleh,
Leidėjas: Springer International Publishing
Išleidimo metai: 2024
Knygos puslapių skaičius: 108
ISBN-10: 3031381351
ISBN-13: 9783031381355
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Mathematical modelling

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Number Systems for Deep Neural Network Architectures“

Būtina įvertinti prekę

Goodreads reviews for „Number Systems for Deep Neural Network Architectures“