0 Mėgstami
0Krepšelis

Painleve Equations in the Differential Geometry of Surfaces

59,20 
59,20 
2025-07-31 59.2000 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Since the time of surfaces -+ in differential Gauss, parametrized (x, y) P(x, y) have been described a frame attached to the moving geometry through TI(x, y) surface. One introduces the Gauss- which linear dif- Weingarten equations are , ferential equations = U = TIX T1, VT', !PY (1. for the and their condition frame, compatibility - = V + [U, V] 0, UY (1.2) which the Gauss-Codazzi For surfaces in three-dim- represents equations . a sional Euclidean the frame T1 lies in the usually or space, group SO(3) SU(2). On the other a of a non-linear in the form hand, representation equation (1.2) is the of the of of starting point theory integrable equations (theory solitons), which in mathematical in the 1960's appeared physics [NMPZ, AbS, CD, FT, More the differential for the coefficients of AbC]. exactly, partial equation (1.2) the matrices U and V is considered to be if these matrices can be integrable , extended to U V non-trivially a one-parameter family (x, y, A), (x, y, A) satisfying - = + U(A)y V(A). [U(A), V(A)] 0, (1-3) so that the differential is and original partial equation preserved.' . Usually U(A) V are rational functions of the which is called the (A) parameter A, spectral param- In soliton the eter is called the Lax . theory, representation (1.3) representation the Zakharov-Shabat or representation [ZS].

Informacija

Autorius: Ulrich Eitner, Alexander I. Bobenko Tu Berlin,
Serija: Lecture Notes in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2000
Knygos puslapių skaičius: 128
ISBN-10: 3540414142
ISBN-13: 9783540414148
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Differential and Riemannian geometry

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Painleve Equations in the Differential Geometry of Surfaces“

Būtina įvertinti prekę

Goodreads reviews for „Painleve Equations in the Differential Geometry of Surfaces“