0 Mėgstami
0Krepšelis

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1

Informacija

Autorius: K. Dzhaparidze
Serija: Springer Series in Statistics
Leidėjas: Springer US
Išleidimo metai: 2011
Knygos puslapių skaičius: 332
ISBN-10: 1461293251
ISBN-13: 9781461293255
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Stochastics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series“

Būtina įvertinti prekę

Goodreads reviews for „Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series“