0 Mėgstami
0Krepšelis

Partial Differential Equations VIII: Overdetermined Systems Dissipative Singular Schrödinger Operator Index Theory

152,44 
152,44 
2025-07-31 152.4400 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Consider a linear partial differential operator A that maps a vector-valued function Y = (Yl,"" Ym) into a vector-valued function I = (h,···, II). We assume at first that all the functions, as well as the coefficients of the differen­ tial operator, are defined in an open domain Jl in the n-dimensional Euclidean n space IR , and that they are smooth (infinitely differentiable). A is called an overdetermined operator if there is a non-zero differential operator A' such that the composition A' A is the zero operator (and underdetermined if there is a non-zero operator A" such that AA" = 0). If A is overdetermined, then A'I = 0 is a necessary condition for the solvability of the system Ay = I with an unknown vector-valued function y. 3 A simple example in 1R is the operator grad, which maps a scalar func­ tion Y into the vector-valued function (8y/8x!, 8y/8x2, 8y/8x3)' A necessary solvability condition for the system grad y = I has the form curl I = O.

Informacija

Serija: Encyclopaedia of Mathematical Sciences
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2012
Knygos puslapių skaičius: 272
ISBN-10: 364248946X
ISBN-13: 9783642489464
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Algebraic geometry

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Partial Differential Equations VIII: Overdetermined Systems Dissipative Singular Schrödinger Operator Index Theory“

Būtina įvertinti prekę

Goodreads reviews for „Partial Differential Equations VIII: Overdetermined Systems Dissipative Singular Schrödinger Operator Index Theory“