0 Mėgstami
0Krepšelis

Positive Polynomials: From Hilbert¿s 17th Problem to Real Algebra

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Positivity is one of the most basic mathematical concepts. In many areas of mathematics (like analysis, real algebraic geometry, functional analysis, etc.) it shows up as positivity of a polynomial on a certain subset of R^n which itself is often given by polynomial inequalities. The main objective of the book is to give useful characterizations of such polynomials. It takes as starting point Hilbert's 17th Problem from 1900 and explains how E. Artin's solution of that problem eventually led to the development of real algebra towards the end of the 20th century. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed. Thus the monograph can also serve as the basis for a 2-semester course in real algebra.

Informacija

Autorius: Charles Delzell, Alexander Prestel,
Serija: Springer Monographs in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2011
Knygos puslapių skaičius: 280
ISBN-10: 3642074456
ISBN-13: 9783642074455
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Functional analysis and transforms

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Positive Polynomials: From Hilbert¿s 17th Problem to Real Algebra“

Būtina įvertinti prekę

Goodreads reviews for „Positive Polynomials: From Hilbert¿s 17th Problem to Real Algebra“