0 Mėgstami
0Krepšelis

Principal Manifolds for Data Visualization and Dimension Reduction

389,60 
389,60 
2025-07-31 389.6000 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SOM), etc. The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described as well. Presentation of algorithms is supplemented by case studies, from engineering to astronomy, but mostly of biological data: analysis of microarray and metabolite data. The volume ends with a tutorial "PCA and K-means decipher genome". The book is meant to be useful for practitioners in applied data analysis in life sciences, engineering, physics and chemistry; it will also be valuable to PhD students and researchers in computer sciences, applied mathematics and statistics.

Informacija

Serija: Lecture Notes in Computational Science and Engineering
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2007
Knygos puslapių skaičius: 364
ISBN-10: 3540737499
ISBN-13: 9783540737490
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Numerical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Principal Manifolds for Data Visualization and Dimension Reduction“

Būtina įvertinti prekę

Goodreads reviews for „Principal Manifolds for Data Visualization and Dimension Reduction“