0 Mėgstami
0Krepšelis

Principles of Neural Model Identification, Selection and Adequacy: With Applications to Financial Econometrics

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Neural networks have had considerable success in a variety of disciplines including engineering, control, and financial modelling. However a major weakness is the lack of established procedures for testing mis-specified models and the statistical significance of the various parameters which have been estimated. This is particularly important in the majority of financial applications where the data generating processes are dominantly stochastic and only partially deterministic. Based on the latest, most significant developments in estimation theory, model selection and the theory of mis-specified models, this volume develops neural networks into an advanced financial econometrics tool for non-parametric modelling. It provides the theoretical framework required, and displays the efficient use of neural networks for modelling complex financial phenomena. Unlike most other books in this area, this one treats neural networks as statistical devices for non-linear, non-parametric regression analysis.

Informacija

Autorius: Apostolos-Paul N. Refenes, Achilleas Zapranis,
Serija: Perspectives in Neural Computing
Leidėjas: Springer London
Išleidimo metai: 1999
Knygos puslapių skaičius: 204
ISBN-10: 1852331399
ISBN-13: 9781852331399
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Cybernetics and systems theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Principles of Neural Model Identification, Selection and Adequacy: With Applications to Financial Econometrics“

Būtina įvertinti prekę

Goodreads reviews for „Principles of Neural Model Identification, Selection and Adequacy: With Applications to Financial Econometrics“