Inductive LogicProgramming¿byDeRaedtandKersting.Inasecondpart,itprovidesa detailedoverviewofthemostimportantprobabilisticlogiclearningformalisms and systems. We are very pleased and proud that the scientists behind the key probabilistic inductive logic programming systems (also those developed outside the APRIL project) have kindly contributed a chapter providing an overviewoftheircontributions.Thisincludes:relationalsequencelearningte- niques (Kersting et al.), using kernels with logical representations (Frasconi andPasserini),MarkovLogic(Domingosetal.), the PRISMsystem (Satoand Kameya),CLP(BN)(SantosCostaetal.),BayesianLogicPrograms(Kersting andDeRaedt),andtheIndependentChoiceLogic(Poole).Thethirdpartthen provides a detailed account of some show-caseapplications of probabilistic - ductive logic programming, more speci?cally: in protein fold discovery (Chen et al.), haplotyping (Landwehr and Mielik¿ ainen) and systems biology (Fages andSoliman). The ?nal parttouchesupon sometheoreticalinvestigationsand VI Preface includes chaptersonbehavioralcomparisonof probabilisticlogicprogramming representations(MuggletonandChen)andamodel-theoreticexpressivityan- ysis(Jaeger).
Leidėjas: | Springer Berlin Heidelberg |
Išleidimo metai: | 2008 |
Knygos puslapių skaičius: | 356 |
ISBN-10: | 3540786511 |
ISBN-13: | 9783540786511 |
Formatas: | Knyga minkštu viršeliu |
Kalba: | Anglų |
Žanras: | Computational biology / bioinformatics |
Parašykite atsiliepimą apie „Probabilistic Inductive Logic Programming“