0 Mėgstami
0Krepšelis

Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition

140,23 
140,23 
2025-07-31 140.2300 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.

Informacija

Autorius: Haruo Yanai, Yoshio Takane, Kei Takeuchi,
Serija: Statistics for Social and Behavioral Sciences
Leidėjas: Springer New York
Išleidimo metai: 2013
Knygos puslapių skaičius: 248
ISBN-10: 1461428599
ISBN-13: 9781461428596
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Probability and statistics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition“

Būtina įvertinti prekę

Goodreads reviews for „Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition“