This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).
Autorius: | André Unterberger |
Serija: | Lecture Notes in Mathematics |
Leidėjas: | Springer Berlin Heidelberg |
Išleidimo metai: | 2000 |
Knygos puslapių skaičius: | 268 |
ISBN-10: | 3540678611 |
ISBN-13: | 9783540678618 |
Formatas: | Knyga minkštu viršeliu |
Kalba: | Anglų |
Žanras: | Number theory |
Parašykite atsiliepimą apie „Quantization and Non-holomorphic Modular Forms“