0 Mėgstami
0Krepšelis

Quantum Gravitation: The Feynman Path Integral Approach

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

"Quantum Gravitation" approaches the subject from the point of view of Feynman path integrals, which provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. It is shown that the path integral method is suitable for both perturbative as well as non-perturbative studies, and is already known to offer a framework for the theoretical investigation of non-Abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman¿s formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. The final chapter addresses contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe.

Informacija

Autorius: Herbert W. Hamber
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2010
Knygos puslapių skaičius: 360
ISBN-10: 3642099009
ISBN-13: 9783642099007
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Particle and high-energy physics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Quantum Gravitation: The Feynman Path Integral Approach“

Būtina įvertinti prekę

Goodreads reviews for „Quantum Gravitation: The Feynman Path Integral Approach“