0 Mėgstami
0Krepšelis

Rational Homotopy Type: A Constructive Study via the Theory of the I*-measure

76,21 
76,21 
2025-07-31 76.2100 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This comprehensive monograph provides a self-contained treatment of the theory of I*-measure, or Sullivan's rational homotopy theory, from a constructive point of view. It centers on the notion of calculability which is due to the author himself, as are the measure-theoretical and constructive points of view in rational homotopy. The I*-measure is shown to differ from other homology and homotopy measures in that it is calculable with respect to most of the important geometric constructions encountered in algebraic topology. This approach provides a new method of treatment and leads to various new results. In particular, an axiomatic system of I*-measure is formulated, quite different in spirit from the usual Eilenberg-Steenrod axiomatic system for homology, and giving at the same time an algorithmic method of computation of the I*-measure in concrete cases. The book will be of interest to researchers in rational homotopy theory and will provide them with new ideas and lines of research to develop further.

Informacija

Autorius: Wen-Tsün Wu
Serija: Lecture Notes in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 1987
Knygos puslapių skaičius: 228
ISBN-10: 3540136118
ISBN-13: 9783540136118
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Algebraic topology

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Rational Homotopy Type: A Constructive Study via the Theory of the I*-measure“

Būtina įvertinti prekę

Goodreads reviews for „Rational Homotopy Type: A Constructive Study via the Theory of the I*-measure“