0 Mėgstami
0Krepšelis

Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models

164,98 
164,98 
2025-07-31 164.9800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes. Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way. The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided.

Informacija

Autorius: Eric Vittinghoff, Charles E. Mcculloch, Stephen C. Shiboski, David V. Glidden,
Serija: Statistics for Biology and Health
Leidėjas: Springer New York
Išleidimo metai: 2014
Knygos puslapių skaičius: 532
ISBN-10: 1489998543
ISBN-13: 9781489998545
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Epidemiology and Medical statistics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models“

Būtina įvertinti prekę

Goodreads reviews for „Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models“