0 Mėgstami
0Krepšelis
254,08 
254,08 
2025-07-31 254.0800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaüs problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaüs problem have no interior branch points.

Informacija

Autorius: Ulrich Dierkes, Anthony Tromba, Stefan Hildebrandt,
Serija: Grundlehren der mathematischen Wissenschaften
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2010
Knygos puslapių skaičius: 644
ISBN-10: 364211699X
ISBN-13: 9783642116995
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Complex analysis, complex variables

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Regularity of Minimal Surfaces“

Būtina įvertinti prekę

Goodreads reviews for „Regularity of Minimal Surfaces“