0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise. This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents  the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. This brief will appeal to theoreticians and data miners working in this field.

Informacija

Autorius: Petros Xanthopoulos, Theodore B. Trafalis, Panos M. Pardalos,
Serija: SpringerBriefs in Optimization
Leidėjas: Springer US
Išleidimo metai: 2012
Knygos puslapių skaičius: 72
ISBN-10: 1441998772
ISBN-13: 9781441998774
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Robust Data Mining“

Būtina įvertinti prekę

Goodreads reviews for „Robust Data Mining“