0 Mėgstami
0Krepšelis

Robust Recognition via Information Theoretic Learning

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.

Informacija

Autorius: Ran He, Liang Wang, Xiaotong Yuan, Baogang Hu,
Serija: SpringerBriefs in Computer Science
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2014
Knygos puslapių skaičius: 124
ISBN-10: 3319074156
ISBN-13: 9783319074153
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Computer vision

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Robust Recognition via Information Theoretic Learning“

Būtina įvertinti prekę

Goodreads reviews for „Robust Recognition via Information Theoretic Learning“