0 Mėgstami
0Krepšelis

Robust Representation for Data Analytics: Models and Applications

203,26 
203,26 
2025-07-31 203.2600 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Informacija

Autorius: Yun Fu, Sheng Li,
Serija: Advanced Information and Knowledge Processing
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2017
Knygos puslapių skaičius: 236
ISBN-10: 331960175X
ISBN-13: 9783319601755
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Robust Representation for Data Analytics: Models and Applications“

Būtina įvertinti prekę

Goodreads reviews for „Robust Representation for Data Analytics: Models and Applications“