0 Mėgstami
0Krepšelis

Self-Adaptive Heuristics for Evolutionary Computation

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

Informacija

Autorius: Oliver Kramer
Serija: Studies in Computational Intelligence
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2008
Knygos puslapių skaičius: 196
ISBN-10: 3540692800
ISBN-13: 9783540692805
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Maths for engineers

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Self-Adaptive Heuristics for Evolutionary Computation“

Būtina įvertinti prekę

Goodreads reviews for „Self-Adaptive Heuristics for Evolutionary Computation“