A major flaw in semi-Riemannian geometry is a shortage of suitable types of maps between semi-Riemannian manifolds that will compare their geometric properties. Here, a class of such maps called semi-Riemannian maps is introduced. The main purpose of this book is to present results in semi-Riemannian geometry obtained by the existence of such a map between semi-Riemannian manifolds, as well as to encourage the reader to explore these maps. The first three chapters are devoted to the development of fundamental concepts and formulas in semi-Riemannian geometry which are used throughout the work. In Chapters 4 and 5 semi-Riemannian maps and such maps with respect to a semi-Riemannian foliation are studied. Chapter 6 studies the maps from a semi-Riemannian manifold to 1-dimensional semi- Euclidean space. In Chapter 7 some splitting theorems are obtained by using the existence of a semi-Riemannian map. Audience: This volume will be of interest to mathematicians and physicists whose work involves differential geometry, global analysis, or relativity and gravitation.
Autorius: | D. N. Kupeli, Eduardo García-Río, |
Serija: | Mathematics and Its Applications |
Leidėjas: | Springer Netherlands |
Išleidimo metai: | 2010 |
Knygos puslapių skaičius: | 212 |
ISBN-10: | 904815202X |
ISBN-13: | 9789048152025 |
Formatas: | Knyga minkštu viršeliu |
Kalba: | Anglų |
Žanras: | Differential and Riemannian geometry |
Parašykite atsiliepimą apie „Semi-Riemannian Maps and Their Applications“