0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive.

Informacija

Autorius: A. A. Tuganbaev
Serija: Mathematics and Its Applications
Leidėjas: Springer Netherlands
Išleidimo metai: 2012
Knygos puslapių skaičius: 372
ISBN-10: 940106136X
ISBN-13: 9789401061360
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Algebra

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Semidistributive Modules and Rings“

Būtina įvertinti prekę

Goodreads reviews for „Semidistributive Modules and Rings“