The Zariski topology, the Jacobian criterion and examples of simple algebras over a field k.- The Kahler 1-differentials.- Every k-algebra a which is essentially of finite type over k and simple is a regular local ring.- Brief discussion of unramified and ¿le homomorphisms.- Some corollaries to Theorem 3.5.- Fitting ideals.- Proof of the Jacobian criterion and some characterizations of simple k-algebras and A-algebras.- Characterizations of simple A-algebras in terms of ¿le homomorphisms; invariance of the property of being a simple algebra under composition and change of base.- Descent of simple homomorphisms and removal of all noetherian assumptions in Chapter 7 and Chapter 8.- Simple morphisms of preschemes and translation of previous theorems into the language of preschemes.
Autorius: | R. Sot |
Serija: | Lecture Notes in Mathematics |
Leidėjas: | Springer Berlin Heidelberg |
Išleidimo metai: | 1982 |
Knygos puslapių skaičius: | 156 |
ISBN-10: | 3540115641 |
ISBN-13: | 9783540115649 |
Formatas: | Knyga minkštu viršeliu |
Kalba: | Anglų |
Žanras: | Algebraic geometry |
Parašykite atsiliepimą apie „Simple Morphisms in Algebraic Geometry“