0 Mėgstami
0Krepšelis

Smoothed-NUV Priors for Imaging and Beyond

92,11 
92,11 
2025-07-31 92.1100 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Many problems in imaging need to be guided with effective priors or reg- ularizations for different reasons. A great variety of regularizations have been proposed that have substantially improved computational imaging and driven the area to a whole new level. The most famous and widely applied among them is L1-regularization and its variations, including total variation (TV) regularization in particular.
This thesis presents an alternative class of regularizations for imaging using normal priors with unknown variance (NUV), which produce sharp edges and few staircase artifacts. While many regularizations (includ- ing TV) prefer piecewise constant images, which leads to staricasing, the smoothed-NUV (SNUV) priors have a convex-concave structure and thus prefer piecewise smooth images. We argue that "piecewise smooth" is a more realistic assumption compared to "piecewise constant" and is crucial for good imaging results.

Informacija

Autorius: Boxiao Ma
Serija: Series in Signal and Information Processing
Leidėjas: Hartung-Gorre
Išleidimo metai: 2022
Knygos puslapių skaičius: 178
ISBN-10: 3866287461
ISBN-13: 9783866287464
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Computer applications in industry and technology

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Smoothed-NUV Priors for Imaging and Beyond“

Būtina įvertinti prekę

Goodreads reviews for „Smoothed-NUV Priors for Imaging and Beyond“