0 Mėgstami
0Krepšelis

Sparse Representation, Modeling and Learning in Visual Recognition: Theory, Algorithms and Applications

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.

Informacija

Autorius: Hong Cheng
Leidėjas: Springer London
Išleidimo metai: 2016
Knygos puslapių skaičius: 272
ISBN-10: 1447172515
ISBN-13: 9781447172512
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Pattern recognition

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Sparse Representation, Modeling and Learning in Visual Recognition: Theory, Algorithms and Applications“

Būtina įvertinti prekę

Goodreads reviews for „Sparse Representation, Modeling and Learning in Visual Recognition: Theory, Algorithms and Applications“