0 Mėgstami
0Krepšelis

Spatio-Temporal Data Analytics for Wind Energy Integration

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well. Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful.

Informacija

Autorius: Lei Yang, Vijay Vittal, Junshan Zhang, Miao He,
Serija: SpringerBriefs in Electrical and Computer Engineering
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2014
Knygos puslapių skaičius: 88
ISBN-10: 3319123181
ISBN-13: 9783319123189
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Spatio-Temporal Data Analytics for Wind Energy Integration“

Būtina įvertinti prekę

Goodreads reviews for „Spatio-Temporal Data Analytics for Wind Energy Integration“