0 Mėgstami
0Krepšelis

Spectral Theory of Approximation Methods for Convolution Equations

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The aim of the present book is to propose a new algebraic approach to the study of norm stability of operator sequences which arise, for example, via discretization of singular integral equations on composed curves. A wide variety of discretization methods, including quadrature rules and spline or wavelet approximations, is covered and studied from a unique point of view. The approach takes advantage of the fruitful interplay between approximation theory, concrete operator theory, and local Banach algebra techniques. The book is addressed to a wide audience, in particular to mathematicians working in operator theory and Banach algebras as well as to applied mathematicians and engineers interested in theoretical foundations of various methods in general use, particularly splines and wavelets. The exposition contains numerous examples and exercises. Students will find a large number of suggestions for their own investigations.

Informacija

Autorius: Roland Hagen, Bernd Silbermann, Steffen Roch,
Serija: Operator Theory: Advances and Applications
Leidėjas: Birkhäuser Basel
Išleidimo metai: 2011
Knygos puslapių skaičius: 396
ISBN-10: 3034898916
ISBN-13: 9783034898911
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Numerical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Spectral Theory of Approximation Methods for Convolution Equations“

Būtina įvertinti prekę

Goodreads reviews for „Spectral Theory of Approximation Methods for Convolution Equations“