0 Mėgstami
0Krepšelis

Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning

220,20 
220,20 
2025-07-31 220.2000 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book introduces a family of large-signal stability-based control methods for different power inverters (grid-connected inverter, standalone inverter, single-phase inverter, and three-phase inverter) in practical applications. Power inverters have stability issues, which include the inverter's own instability as well as the inverter's instability in relation to the other power electronic devices in the system (i.e., weak grid and the EMI filter). Most of the stability analyses and solutions are based on small-signal stability technology. Unfortunately, in actuality, the majority of practical instability concerns in power inverter systems are large-signal stability problems, which, when compared to small-signal stability problems, can cause substantial damage to electrical equipment. As a result, researchers must conduct a comprehensive investigation of the large-signal stability challenge and solutions for power inverters. This book can be used as a reference for researchers, power inverters manufacturers, and end-users. As a result, the book will not become obsolete in the near future, regardless of technology advancements.

Informacija

Autorius: Xin Zhang, Jinsong He, Xiaohai Ge, Zhixun Ma, Hao Ma,
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2023
Knygos puslapių skaičius: 180
ISBN-10: 9811971935
ISBN-13: 9789811971938
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Electronics: circuits and components

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning“

Būtina įvertinti prekę

Goodreads reviews for „Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning“