0 Mėgstami
0Krepšelis

Statistical Analysis of Graph Structures in Random Variable Networks

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book studies complex systems with elements represented by random variables. Its main goal is to study and compare uncertainty of algorithms of network structure identification with applications to market network analysis. For this, a mathematical model of random variable network is introduced, uncertainty of identification procedure is defined through a risk function, random variables networks with different measures of similarity (dependence) are discussed, and general statistical properties of identification algorithms are studied. The volume also introduces a new class of identification algorithms based on a new measure of similarity and prove its robustness in a large class of distributions, and presents applications to social networks, power transmission grids, telecommunication networks, stock market networks, and brain networks through a theoretical analysis that identifies network structures. Both researchers and graduate students in computer science, mathematics, and optimization will find the applications and techniques presented useful.

Informacija

Autorius: V. A. Kalyagin, P. M. Pardalos, P. A. Koldanov, A. P. Koldanov,
Serija: SpringerBriefs in Optimization
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2020
Knygos puslapių skaičius: 112
ISBN-10: 3030602923
ISBN-13: 9783030602925
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Mathematical modelling

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Statistical Analysis of Graph Structures in Random Variable Networks“

Būtina įvertinti prekę

Goodreads reviews for „Statistical Analysis of Graph Structures in Random Variable Networks“