0 Mėgstami
0Krepšelis

Stochastic Learning and Optimization: A Sensitivity-Based Approach

338,78 
338,78 
2025-07-31 338.7800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Performance optimization is vital in the design and operation of modern engineering systems, including communications, manufacturing, robotics, and logistics. Most engineering systems are too complicated to model, or the system parameters cannot be easily identified, so learning techniques have to be applied. This is a multi-disciplinary area which has been attracting wide attention across many disciplines. Areas such as perturbation analysis (PA) in discrete event dynamic systems (DEDSs), Markov decision processes (MDPs) in operations research, reinforcement learning (RL) or neuro-dynamic programming (NDP) in computer science, identification and adaptive control (I&AC) in control systems, share the common goal: to make the "best decision" to optimize system performance. This book provides a unified framework based on a sensitivity point of view. It also introduces new approaches and proposes new research topics within this sensitivity-based framework.

Informacija

Autorius: Xi-Ren Cao
Leidėjas: Springer US
Išleidimo metai: 2010
Knygos puslapių skaičius: 588
ISBN-10: 144194222X
ISBN-13: 9781441942227
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Stochastics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Stochastic Learning and Optimization: A Sensitivity-Based Approach“

Būtina įvertinti prekę

Goodreads reviews for „Stochastic Learning and Optimization: A Sensitivity-Based Approach“