0 Mėgstami
0Krepšelis

Text Mining: Predictive Methods for Analyzing Unstructured Information

254,08 
254,08 
2025-07-31 254.0800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Data mining is a mature technology. The prediction problem, looking for predictive patterns in data, has been widely studied. Strong me- ods are available to the practitioner. These methods process structured numerical information, where uniform measurements are taken over a sample of data. Text is often described as unstructured information. So, it would seem, text and numerical data are different, requiring different methods. Or are they? In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text. Yet, there are key differences. Evaluation techniques must be adapted to the chronological order of publication and to alternative measures of error. Because the data are documents, more specialized analytical methods may be preferred for text. Moreover, the methods must be modi?ed to accommodate very high dimensions: tens of thousands of words and documents. Still, the central themes are similar.

Informacija

Autorius: Sholom M. Weiss, Fred Damerau, Tong Zhang, Nitin Indurkhya,
Leidėjas: Springer US
Išleidimo metai: 2010
Knygos puslapių skaičius: 252
ISBN-10: 1441929967
ISBN-13: 9781441929969
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Text Mining: Predictive Methods for Analyzing Unstructured Information“

Būtina įvertinti prekę

Goodreads reviews for „Text Mining: Predictive Methods for Analyzing Unstructured Information“