0 Mėgstami
0Krepšelis

The Asymptotic Behaviour of Semigroups of Linear Operators

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo­ nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A.

Informacija

Autorius: Jan Van Neerven
Serija: Operator Theory: Advances and Applications
Leidėjas: Birkhäuser Basel
Išleidimo metai: 1996
Knygos puslapių skaičius: 256
ISBN-10: 3764354550
ISBN-13: 9783764354558
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Functional analysis and transforms

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Asymptotic Behaviour of Semigroups of Linear Operators“

Būtina įvertinti prekę

Goodreads reviews for „The Asymptotic Behaviour of Semigroups of Linear Operators“