0 Mėgstami
0Krepšelis

The Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations

42,33 
42,33 
2025-07-31 42.3300 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The Dirichlet problem has a very long history in mathematics and its importance in partial differential equations, harmonic analysis, potential theory and the applied sciences is well-known. In the last decade the Dirichlet problem with L2-boundary data has attracted the attention of several mathematicians. The significant features of this recent research are the use of weighted Sobolev spaces, existence results for elliptic equations under very weak regularity assumptions on coefficients, energy estimates involving L2-norm of a boundary data and the construction of a space larger than the usual Sobolev space W1,2 such that every L2-function on the boundary of a given set is the trace of a suitable element of this space. The book gives a concise account of main aspects of these recent developments and is intended for researchers and graduate students. Some basic knowledge of Sobolev spaces and measure theory is required.

Informacija

Autorius: Jan Chabrowski
Serija: Lecture Notes in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 1991
Knygos puslapių skaičius: 180
ISBN-10: 3540544860
ISBN-13: 9783540544869
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Functional analysis and transforms

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations“

Būtina įvertinti prekę

Goodreads reviews for „The Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations“