0 Mėgstami
0Krepšelis

The Dual of L¿(X,L,¿), Finitely Additive Measures and Weak Convergence: A Primer

110,09 
110,09 
2025-07-31 110.0900 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

In measure theory, a familiar representation theorem due to F. Riesz identifies the dual space Lp(X,L,¿)* with Lq(X,L,¿), where 1/p+1/q=1, as long as 1 ¿ p¿(X,L,¿)* cannot be similarly described, and is instead represented as a class of finitely additive measures. This book provides a reasonably elementary account of the representation theory of L¿(X,L,¿)*, examining pathologies and paradoxes, and uncovering some surprising consequences. For instance, a necessary and sufficient condition for a bounded sequence in L¿(X,L,¿) to be weakly convergent, applicable in the one-point compactification of X, is given. With a clear summary of prerequisites, and illustrated by examples including L¿(Rn) and the sequence space l¿, this book makes possibly unfamiliar material, some of which may be new, accessible to students and researchers in the mathematical sciences.

Informacija

Autorius: John Toland
Serija: SpringerBriefs in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2020
Knygos puslapių skaičius: 112
ISBN-10: 3030347311
ISBN-13: 9783030347314
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Functional analysis and transforms

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Dual of L¿(X,L,¿), Finitely Additive Measures and Weak Convergence: A Primer“

Būtina įvertinti prekę

Goodreads reviews for „The Dual of L¿(X,L,¿), Finitely Additive Measures and Weak Convergence: A Primer“