0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans­ lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor­ hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.

Informacija

Autorius: Harold R. Parks, Steven G. Krantz,
Serija: Birkhäuser Advanced Texts Basler Lehrbücher
Leidėjas: Birkhäuser Boston
Išleidimo metai: 1999
Knygos puslapių skaičius: 324
ISBN-10: 0817640975
ISBN-13: 9780817640972
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Calculus and mathematical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Geometry of Domains in Space“

Būtina įvertinti prekę

Goodreads reviews for „The Geometry of Domains in Space“