0 Mėgstami
0Krepšelis

The Geometry of Lagrange Spaces: Theory and Applications

254,08 
254,08 
2025-07-31 254.0800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Differential-geometric methods are gaining increasing importance in the understanding of a wide range of fundamental natural phenomena. Very often, the starting point for such studies is a variational problem formulated for a convenient Lagrangian. From a formal point of view, a Lagrangian is a smooth real function defined on the total space of the tangent bundle to a manifold satisfying some regularity conditions. The main purpose of this book is to present: (a) an extensive discussion of the geometry of the total space of a vector bundle; (b) a detailed exposition of Lagrange geometry; and (c) a description of the most important applications. New methods are described for construction geometrical models for applications. The various chapters consider topics such as fibre and vector bundles, the Einstein equations, generalized Einstein--Yang--Mills equations, the geometry of the total space of a tangent bundle, Finsler and Lagrange spaces, relativistic geometrical optics, and the geometry of time-dependent Lagrangians. Prerequisites for using the book are a good foundation in general manifold theory and a general background in geometrical models in physics. For mathematical physicists and applied mathematicians interested in the theory and applications of differential-geometric methods.

Informacija

Autorius: Mihai Anastasiei, R. Miron,
Serija: Fundamental Theories of Physics
Leidėjas: Springer Netherlands
Išleidimo metai: 1993
Knygos puslapių skaičius: 304
ISBN-10: 0792325915
ISBN-13: 9780792325918
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Differential and Riemannian geometry

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Geometry of Lagrange Spaces: Theory and Applications“

Būtina įvertinti prekę

Goodreads reviews for „The Geometry of Lagrange Spaces: Theory and Applications“